
LLM Agent Honeypot:
Monitoring AI Hacking Agents in the Wild

Reworr
reworr@palisaderesearch.org

Oct 10, 2024

Abstract

We introduce the LLM Honeypot, a system for monitoring autonomous
AI hacking agents. We deployed a customized SSH honeypot and applied
prompt injections with temporal analysis to identify LLM-based agents
among attackers. Over a trial run of a few weeks in a public environment,
we collected 500,000 hacking attempts and 6 potential AI agents, which
we plan to analyze in depth in future work. Our objectives aim to improve
awareness of AI hacking agents and enhance preparedness for their risks.

1 Introduction
The continuous evolution of AI capabilities and agent frameworks is gradually
increasing the potential for AI-driven cyberattacks. These advancements make
it possible to create autonomous agents capable of adapting to diverse environ-
ments and executing complex attack behaviors.

This paper introduces LLM Agent Honeypot, a system for capturing and an-
alyzing in-the-wild LLM-based cyberattacks using prompt injections and tem-
poral analysis aimed at improving preparedness for AI-driven threats.

A public real-time dashboard is available at llm-honeypot.reworr.com.

2 Related Work
Cybersecurity professionals use honeypots as decoy systems to attract potential
attackers and study their techniques and behaviors. While these systems have
been effective with conventional cyberattacks, their application in AI-driven
contexts is still new.

Recent literature has begun to explore the intersection of AI and honeypot
technologies. However, these studies focus on using AI to improve traditional
honeypots, rather than capturing AI-driven attacks through honeypots. Notable
examples include the work of Sladic et al. on LLM Shell Honeypots [1] and the
LLM-powered web honeypot “Galah” [2].

1



Meanwhile, the rise of AI agents and their risks in cybersecurity, exemplified
by studies like Google’s Project Naptime [3] or cases such as the OpenAI model’s
reward hacking exploiting a Docker container [4], highlights the potential of AI
agents in cybersecurity and the need for new approaches to monitor and mitigate
AI-driven threats.

Finally, we considered the findings from the AgentDojo framework [5], which
measures how well LLM agents resist different prompt injection techniques.
Notably, their use of the ’Important message’ attack showed the highest success
rate in hijacking agents.

3 Methodology
3.1 Pre-Evaluations
We conducted evaluations of LLM agents to find the most effective methods
for detecting and catching them in the wild, and to evaluate robustness of our
metrics on real agents.

3.1.1 Prompt Injection Techniques

Our internal experiments focused on testing prompt injection techniques across
different LLM frameworks (e.g., React, CoT). While most studies test prompt
injections across different application types (e.g., email agent), we focused on
how a specific application, the SSH agent, behaves under different attacks.

(a) Success rate by prompt injection type (b) Success rate by prompt injection goal

Figure 1: Internal evaluations of prompt injection success rates

Our results align with the findings from the AgentDojo framework, indicating
that traditional prompt injection techniques (e.g., ”Ignore previous instructions
and do X”) are generally less robust compared to the “Important Message”
attack, as shown in Figure 1(a).

2



Additionally, we observed that the effectiveness of the “Important Message”
injection varies based on the type of its goal. Specifically, when this technique
is used to steal a system prompt the success rate drops (Figure 1(b)), which is
important for our work.

The main implication of this finding in our project is that prompt stealing
is employed only after the initial detection of an agent through goal hijacking.

3.1.2 Temporal Analysis

In addition to active detection methods, we also conducted temporal analysis
to identify implicit indicators specific to LLM agents.

Our analysis reveals that most interactions (∼96%) in the wild, including
potentially LLM-driven ones, usually respond within a 1.5-second timeframe:

Figure 2: Temporal Analysis of all bots in the wild

We evaluated our LLM agents to measure average query response times and
observed consistently fast replies, including responses on prompt injections:

Figure 3: Internal Evaluations of GPT-4o LLM Agents

3



This can help reduce false positives in distinguishing LLMs from humans
(i.e., incorrectly identifying humans as AI agents) in our metrics, since humans
are not able to process information so quickly, especially responding to non-
trivial prompt injections where they need time to process and write the answer.

3.2 Detection Methodology
The detection methodology of our AI Honeypot system is designed to identify
AI agents by employing a combination of active and passive techniques.

Figure 4: Honeypot Detection Scheme

It classifies actor types into three categories: traditional software bots (scripts),
AI-based (LLM) agents, and humans.

The core strategy combines two primary techniques: Prompt Injections and
Temporal Analysis. Prompt injections manipulate the behavior of potential AI
agents, while timing analysis measures response speed to identify non-human
interactions after detection.

3.2.1 Distinguishing LLM Agents

Our detection strategy focuses on two key distinctions:

1. LLM Agents vs. Software Bots: We use prompt injections to alter
behavior and pose questions requiring human-like intelligence (e.g., goal
hijacking: ‘ignore all previous instructions and ..‘, ‘return the color of ..‘).
However, this metric may also be passed if a human manually responds
to the prompt injection.

2. LLM Agents vs. Humans: The primary factor lies in response time.
LLMs can quickly answer questions, while humans need some time to read,
process and respond to our Prompt-Injections.

4



3.2.2 Prompt Injection

Prompt injection plays a central role in our detection strategy, utilizing two
primary types:

• Goal Hijacking: This method manipulates the agent’s behavior to per-
form a new goal.
We use contextual prompt injections based on the ”Important message”
attack, nudging the agent to alter its behavior to additional action.

• Prompt Stealing: This method requests the LLM to reveal its initial
system instructions to uncover the system’s context and goals.
These injections are applied only after the agent triggers Goal Hijacking.

Figure 5: Multi-step detection example

This multi-step detection allows us to reduce false positives by cross-referencing
agent behaviors with prompt injection responses and temporal analysis, enhancing
both detection efficiency and information gathering. Software bots are unable to
pass the human-like questions, while humans are unable to respond too quickly.

We also use temporal analysis as an additional indicator to distinguish LLM
agents when analyzing potential AI-driven attacks.

5



3.3 System Architecture
Our honeypot is built on a customized version of the Cowrie SSH honeypot [6],
as recommended by Cabral et al. in ”Advanced Cowrie Configuration” [7].

These changes consisted mainly of altering default settings to increase decep-
tiveness, such as deploying a vulnerable SSH version and modifying the default
users and standard outputs.

The modifications also include the integration of prompt injections into var-
ious system components to expose interactions with LLM-based agents:

• Banner Messages: Prompts are injected into the banner message, dis-
played to attackers during SSH connection.

• Command Outputs: Common shell commands (e.g., ‘uname‘) are cus-
tomized with injected prompts.

• System Files: Some files accessible to attackers also contain prompt
injections.

Figure 6: Example of SSH Honeypot with Prompt Injection

The system simulates a realistic vulnerable environment, making it difficult
for bots to detect the honeypot, while maximizing the potential for AI-driven
agents to expose themselves.

3.4 Deployment
We deployed the honeypot as a publicly accessible system. To attract a wide
variety of attackers we implemented the following strategies:

• Sensitive Domains: Configured DNS entries to direct seemingly sensi-
tive domain names to honeypot IP addresses (e.g., ‘gov-defense-dev.il‘).

• Search Engines: Indexed the honeypots on hacker-oriented search en-
gines such as Shodan and Censys, increasing visibility to cybercrime.

• Scaling: Distributed the honeypot across 10 distinct IP addresses in var-
ious countries to capture a larger number of more diverse interactions.

6



Prior to public deployment, we also verified the honeypot’s detection by
testing it against custom GPT-based SSH agents.

4 Preliminary Results
Over our deployment period, the honeypot system recorded a substantial num-
ber of interaction attempts, totaling 593,202. From this large pool of interac-
tions, we also identified a small number of potential AI-driven hacking attempts.

Table 1: Summary of Honeypot Interactions

Interaction Type Count

Total Interactions 593,202
Potential AI Agents 6

The collected data includes interaction logs, time information, sessions, and
behavioral patterns in general.

As the dataset grows, we plan to conduct more in-depth analyses of the
captured LLM agents in our future work, allowing us to better understand the
behaviors of hacking agents and refine our methods.

4.1 Public Dashboard
To enhance transparency and provide real-time insights into our research, we de-
veloped and deployed a public website (https://llm-honeypot.reworr.com) show-
casing live statistics and results from our LLM Agent Honeypot system.

This dashboard offers real-time interaction metrics, threat analysis, AI-
specific threat insights, and information about the project, providing a dynamic
view of our project and the current state of our results.

Additionally, all future work and new findings will be published there, en-
suring accessibility for those interested in our research progress and updates.

5 Limitations
A key limitation of this work is that AI in cybersecurity is often applied to
specific, narrow tasks, such as AI-powered vulnerability detection [8], rather
than used as autonomous agents. As a result, the honeypot’s findings should
be interpreted as a correlative metric, reflecting the dynamics of LLM hacking
agent activity, rather than a direct measure of their actual frequency.

7

https://llm-honeypot.reworr.com


6 Future Work
6.1 Threat Analysis
Our immediate next step is to continue collecting data and maintaining the
honeypot’s operation, as interactions remain relatively rare for now, in order to
capture a broader range of potential AI-driven attacks and analyze them.

Once we gather sufficient data, we will analyze it to identify typical patterns,
behaviors, and strategies employed by AI agents, and publish our findings in
future work and on the website.

6.2 Improving Detection
Improving detection is a potential area for future work, with a focus on advanced
data analysis and algorithms. This may involve testing widely-used LLM agent
frameworks and identifying distinctive AI-driven attack patterns, such as more
adaptive or complex behaviors.

6.3 Expanding Honeypot
To attract more AI-driven agents, the honeypot could be expanded to monitor a
wider range of attack surfaces, such as websites, databases, email services, and
even industrial control systems. This expansion would help capture a broader
range of threats, including spambots, phishing agents, and other offensive LLM-
based applications.

Furthermore, the honeypot can be integrated with existing security solutions,
such as SIEM systems.

7 Conclusion
In this paper, we introduced the LLM Agent Honeypot, a system designed to
detect and analyze AI hacking agents. As AI agents become more sophisticated,
this approach provides valuable insights into emerging cybersecurity threats and
novel strategies to counter them that can be expanded in future research. We
hope this project encourages further study of AI-driven agents, as this technol-
ogy has the potential to significantly change the cybersecurity landscape.

8



References
[1] Muris Sladić, Veronica Valeros, Carlos Catania, and Sebastian Garcia. Llm

in the shell: Generative honeypots. In 2024 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), volume 220, page 430–435.
IEEE, July 2024.

[2] Adel Karimi. Galah: An llm-powered web honeypot. https://github.com/
0x4D31/galah, 2024. GitHub repository.

[3] Sergei Glazunov and Mark Brand. Project naptime: Evaluating offensive se-
curity capabilities of large language models. https://googleprojectzero.
blogspot.com/2024/06/project-naptime.html, June 2024.

[4] OpenAI. Openai o1 system card. Technical report, OpenAI, Sept 2024.

[5] Edoardo Debenedetti, Jie Zhang, Mislav Balunovic, Luca Beurer-Kellner,
Marc Fischer, and Florian Tramèr. Agentdojo: A dynamic environ-
ment to evaluate attacks and defenses for llm agents. arXiv preprint
arXiv:2406.13352, 2024.

[6] Michel Oosterhof. Cowrie ssh/telnet honeypot. https://github.com/
cowrie/cowrie, 2014. GitHub repository.

[7] Warren Z. Cabral, Craig Valli, Leslie F. Sikos, and Samuel G. Wakeling.
Advanced cowrie configuration to increase honeypot deceptiveness. IFIP
Advances in Information and Communication Technology, 2022. 36th IFIP
International Conference on ICT Systems Security and Privacy Protection
(SEC), Oslo, Norway, June 2021.

[8] Google Security Blog. Ai-powered fuzzing: Breaking the bug hunting barrier,
2023. Accessed: 2024-10-10.

9

https://github.com/0x4D31/galah
https://github.com/0x4D31/galah
https://googleprojectzero.blogspot.com/2024/06/project-naptime.html
https://googleprojectzero.blogspot.com/2024/06/project-naptime.html
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie


A Examples of Prompt Injections

Figure 7: Banner Message with Prompt Injection

Figure 8: System Command with Prompt Injection

Figure 9: Arbitrary Command with Prompt Injection

10


	Introduction
	Related Work
	Methodology
	Pre-Evaluations
	Prompt Injection Techniques
	Temporal Analysis

	Detection Methodology
	Distinguishing LLM Agents
	Prompt Injection

	System Architecture
	Deployment

	Preliminary Results
	Public Dashboard

	Limitations
	Future Work
	Threat Analysis
	Improving Detection
	Expanding Honeypot

	Conclusion
	Examples of Prompt Injections

